MBP scientist Dr. Jean Chen has published a new NeuroImage article entitled 'Modeling the dynamics of cerebrovascular reactivity to carbon dioxide in fMRI under task and resting-state conditions'.
Article Abstract
'Conventionally, cerebrovascular reactivity (CVR) is estimated as the amplitude of the hemodynamic response to vascular stimuli, most commonly carbon dioxide (CO2). While the CVR amplitude has established clinical utility, the temporal characteristics of CVR (dCVR) have been increasingly explored and may yield even more pathology-sensitive parameters. This work is motivated by the current need to evaluate the feasibility of dCVR modeling in various experimental conditions. In this work, we present a comparison of several recently published/utilized model-based deconvolution (response estimation) approaches for estimating the CO2 response function h(t), including maximum a posteriori likelihood (MAP), inverse logit (IL), canonical correlation analysis (CCA), and basis expansion (using Gamma and Laguerre basis sets). To aid the comparison, we devised a novel simulation framework that incorporates a wide range of SNRs, ranging from 10 to -7 dB, representative of both task and resting-state CO2 changes. In addition, we built ground-truth h(t) into our simulation framework, overcoming the conventional limitation that the true h(t) is unknown. Moreover, to best represent realistic noise found in fMRI scans, we extracted noise from in-vivo resting-state scans. Furthermore, we introduce a simple optimization of the CCA method (CCAopt) and compare its performance to these existing methods. Our findings suggest that model-based methods can accurately estimate dCVR even amidst high noise (i.e. resting-state), and in a manner that is largely independent of the underlying model assumptions for each method. We also provide a quantitative basis for making methodological choices, based on the desired dCVR parameters, the estimation accuracy and computation time. The BEL method provided the highest accuracy and robustness, followed by the CCAopt and IL methods. Of the three, the CCAopt method has the lowest computational requirements. These findings lay the foundation for wider adoption of dCVR estimation in CVR mapping.'