MEDICAL BIOPHYSICS COURSE MODULES
2021 – 2022
Special Message from the Department
Ontario’s response to the COVID-19 pandemic continues to evolve. Changes will likely occur as the province and its municipalities adjust to new data about the virus. In these circumstances, please be advised that the manner of delivery of courses, co-curricular opportunities, programs, and services is subject to change, in accordance with university policies. The University thanks its students, faculty, and staff for their flexibility during these challenging times as we work together to maintain the standards of excellence that are the hallmark of the University.
Course module enrolment

To enroll, course modules must be requested by students on ACORN/ROSI. Instructions are available at https://medbio.utoronto.ca/course-registration. Students can only add a course module if no more than 15% of the course has been completed. Students who do not register (pay or defer fees) by the deadline will be removed from their course registration. Courses such as RST9999Y and the seminar course, MBP1015Y are preloaded and requests are not necessary. Students should check ACORN/ROSI to make sure they are enrolled in these two courses.

- If students encounter difficulty when enrolling in their courses, they should contact either Donna (uptown students) or Annette (downtown students).

Course module availability

All biology stream modules will be offered in alternate years. A core set of physics stream modules is offered every year while more specialized topics will be offered in alternate years or based on student and faculty response to the new curriculum. Course modules schedules can be reviewed on the MBP calendar at https://medbio.utoronto.ca/mbp-calendar.

Withdrawing from a course module

Students can withdraw from a course module up until the end of the 3rd class or as long as no more than 50% of the module has been completed. While many instructors and programs consider it best practice to provide students with an interim evaluation of their performance in the course prior to the drop date, this is not a requirement for graduate courses (as per the University Assessment and Grading Practices Policy 2012). To request withdrawal from a module, please email the Coordinator of the module and cc Chau Dang and withdraw in ACORN. If students are unable to withdraw in ACORN, they must complete the Drop Course form and email it to Chau Dang.

Policy for students receiving a failing grade in a course module

In the case where a student receives a failing grade in a module (less than 70%), the failing grade will appear on the student’s transcript. If the module is one of the required modules MBP1200H or MBP1201H, the student will need to retake the module the following year. A passing grade is required for a module to count toward the graduation requirements.

Courses offered in other Departments

Graduate students at the University of Toronto can take graduate courses offered in any department, subject to availability and approval of their home department; the latter is given by the MBP graduate coordinators (Dr. Greg Stanisz or Dr. Lothar Lilge) on a case-by-case basis with approval of the student’s supervisor and the course coordinator. Please provide Annette (Downtown Students) or Donna (Uptown Students) with a copy of the required approvals. If the student misses the deadline for course registration online, they will need to fill out an Add/Drop Course form: https://www.sgs.utoronto.ca/wp-content/uploads/sites/253/2019/06/AddDropCourses.pdf
Some examples of courses that may be of interest to MBP graduate students are listed below.

1. IMM1431H – Immunotherapy
2. JNR1444Y – Fundamentals of Neuroscience: Cellular and Molecular
3. JEB1365H – Ultrasound: Theory and Applications in Biology and Medicine
4. BME1460H – Quantitative Fluorescence Microscopy: Theory and Application to Live Cell Imaging
5. JYG1555H – Advanced Topics: Cellular and Molecular Neurobiology
6. PSL1026H – Advanced Topics: Experimental Cell Physiology
7. CSC2515H – Introduction to Machine Learning
8. PSY5110H – Advanced Topics in Behavioural Neuroscience: Imaging Techniques in Preclinical Research
9. MSC1006H - Neuroanatomy – Introduction to Anatomical Organization of the Brain
10. PSY4706HS - Human Brain Anatomy
11. MSC1087H - Neuroimaging Methods using Magnetic Resonance Imaging
12. STA2005H - Applied multivariate analysis
13. STA4273H – Large Scale Machine Learning
14. MBP1023H - Clinical Radiation Physics and Dosimetry (to be confirmed for Winter 2022)
COURSE MODULES
Mandatory Modules

MBP 1201H - Introductory Biostatistics
(0.25 credits)
Sept. 14 – Nov. 2, with Python Bootcamp on Sept. 10

MBP 1200H - Scientific Exposition and Ethics
(0.25 credits)
Sept. 13 – Nov. 10

BIOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Dates</th>
<th>PHYSICS</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP 1303H</td>
<td>- Cell Signaling & Metabolism (0.25 credits)</td>
<td>Nov. 4 – Dec. 16</td>
<td>MBP 1400H - Advanced Magnetic Resonance Imaging (0.25 credits)</td>
<td>Nov. 1 – Dec. 20</td>
</tr>
<tr>
<td>MBP 1305H</td>
<td>- Experimental Models for Cancer Research (0.25 credits)</td>
<td>Jan. 17 – Mar. 7</td>
<td>MBP 1401H - Advanced Ultrasound (0.25 credits)</td>
<td>Mar. 2 – Mar. 23</td>
</tr>
<tr>
<td>MBP 1304H</td>
<td>- Predictive Oncology & Therapeutics (0.25 credits)</td>
<td>Sep. 16 – Oct. 28</td>
<td>MBP 1404H - Basics of Cell and Molecular Biology (0.25 credits)</td>
<td>Mar. 3 – Apr. 14</td>
</tr>
<tr>
<td>MBP 1300H</td>
<td>- Quantitative Cancer Genomics (0.25 credits)</td>
<td>Nov. 1 – Dec. 13</td>
<td>MBP 1413H - Biomedical Applications of Artificial Intelligence</td>
<td>TBD – Winter 2022</td>
</tr>
<tr>
<td>MBP 1307H</td>
<td>- Development, Stem Cells & Cancer (0.25 credits)</td>
<td>Apr. 25 – Apr. 29, May 6</td>
<td>MBP 1405H - Introduction to Bio-Microscopies (0.25 credits)</td>
<td>Jan. 11 – Feb. 22</td>
</tr>
<tr>
<td>MBP 1308H</td>
<td>- Radiation Biology & DNA Repair (0.25 credits)</td>
<td>Sept. 23 – Oct. 28</td>
<td>MBP 1406H - Introduction to Biophotonics (0.25 credits)</td>
<td>Mar. 4 – Apr. 1</td>
</tr>
</tbody>
</table>

PHYSICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Dates</th>
<th>PHYSICS</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP 1303H</td>
<td>- Cell Signaling & Metabolism (0.25 credits)</td>
<td>Nov. 4 – Dec. 16</td>
<td>MBP 1400H - Advanced Magnetic Resonance Imaging (0.25 credits)</td>
<td>Nov. 1 – Dec. 20</td>
</tr>
<tr>
<td>MBP 1305H</td>
<td>- Experimental Models for Cancer Research (0.25 credits)</td>
<td>Jan. 17 – Mar. 7</td>
<td>MBP 1401H - Advanced Ultrasound (0.25 credits)</td>
<td>Mar. 2 – Mar. 23</td>
</tr>
<tr>
<td>MBP 1304H</td>
<td>- Predictive Oncology & Therapeutics (0.25 credits)</td>
<td>Sep. 16 – Oct. 28</td>
<td>MBP 1404H - Basics of Cell and Molecular Biology (0.25 credits)</td>
<td>Mar. 3 – Apr. 14</td>
</tr>
<tr>
<td>MBP 1300H</td>
<td>- Quantitative Cancer Genomics (0.25 credits)</td>
<td>Nov. 1 – Dec. 13</td>
<td>MBP 1413H - Biomedical Applications of Artificial Intelligence</td>
<td>TBD – Winter 2022</td>
</tr>
<tr>
<td>MBP 1307H</td>
<td>- Development, Stem Cells & Cancer (0.25 credits)</td>
<td>Apr. 25 – Apr. 29, May 6</td>
<td>MBP 1405H - Introduction to Bio-Microscopies (0.25 credits)</td>
<td>Jan. 11 – Feb. 22</td>
</tr>
<tr>
<td>MBP 1308H</td>
<td>- Radiation Biology & DNA Repair (0.25 credits)</td>
<td>Sept. 23 – Oct. 28</td>
<td>MBP 1406H - Introduction to Biophotonics (0.25 credits)</td>
<td>Mar. 4 – Apr. 1</td>
</tr>
</tbody>
</table>

PROJECTED COURSE MODULES*

Mandatory Modules

MBP 1201H - Introductory Biostatistics

MBP 1200H - Scientific Exposition and Ethics

BIOLOGY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Dates</th>
<th>PHYSICS</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP 1303H</td>
<td>- Cell Signaling & Metabolism (0.25 credits)</td>
<td>Nov. 4 – Dec. 16</td>
<td>MBP 1400H - Advanced Magnetic Resonance Imaging (0.25 credits)</td>
<td>Nov. 1 – Dec. 20</td>
</tr>
<tr>
<td>MBP 1305H</td>
<td>- Experimental Models for Cancer Research (0.25 credits)</td>
<td>Jan. 17 – Mar. 7</td>
<td>MBP 1401H - Advanced Ultrasound (0.25 credits)</td>
<td>Mar. 2 – Mar. 23</td>
</tr>
<tr>
<td>MBP 1304H</td>
<td>- Predictive Oncology & Therapeutics (0.25 credits)</td>
<td>Sep. 16 – Oct. 28</td>
<td>MBP 1404H - Basics of Cell and Molecular Biology (0.25 credits)</td>
<td>Mar. 3 – Apr. 14</td>
</tr>
<tr>
<td>MBP 1300H</td>
<td>- Quantitative Cancer Genomics (0.25 credits)</td>
<td>Nov. 1 – Dec. 13</td>
<td>MBP 1413H - Biomedical Applications of Artificial Intelligence</td>
<td>TBD – Winter 2022</td>
</tr>
<tr>
<td>MBP 1307H</td>
<td>- Development, Stem Cells & Cancer (0.25 credits)</td>
<td>Apr. 25 – Apr. 29, May 6</td>
<td>MBP 1405H - Introduction to Bio-Microscopies (0.25 credits)</td>
<td>Jan. 11 – Feb. 22</td>
</tr>
<tr>
<td>MBP 1308H</td>
<td>- Radiation Biology & DNA Repair (0.25 credits)</td>
<td>Sept. 23 – Oct. 28</td>
<td>MBP 1406H - Introduction to Biophotonics (0.25 credits)</td>
<td>Mar. 4 – Apr. 1</td>
</tr>
</tbody>
</table>

PHYSICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Dates</th>
<th>PHYSICS</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP 1303H</td>
<td>- Cell Signaling & Metabolism (0.25 credits)</td>
<td>Nov. 4 – Dec. 16</td>
<td>MBP 1400H - Advanced Magnetic Resonance Imaging (0.25 credits)</td>
<td>Nov. 1 – Dec. 20</td>
</tr>
<tr>
<td>MBP 1305H</td>
<td>- Experimental Models for Cancer Research (0.25 credits)</td>
<td>Jan. 17 – Mar. 7</td>
<td>MBP 1401H - Advanced Ultrasound (0.25 credits)</td>
<td>Mar. 2 – Mar. 23</td>
</tr>
<tr>
<td>MBP 1304H</td>
<td>- Predictive Oncology & Therapeutics (0.25 credits)</td>
<td>Sep. 16 – Oct. 28</td>
<td>MBP 1404H - Basics of Cell and Molecular Biology (0.25 credits)</td>
<td>Mar. 3 – Apr. 14</td>
</tr>
<tr>
<td>MBP 1300H</td>
<td>- Quantitative Cancer Genomics (0.25 credits)</td>
<td>Nov. 1 – Dec. 13</td>
<td>MBP 1413H - Biomedical Applications of Artificial Intelligence</td>
<td>TBD – Winter 2022</td>
</tr>
<tr>
<td>MBP 1307H</td>
<td>- Development, Stem Cells & Cancer (0.25 credits)</td>
<td>Apr. 25 – Apr. 29, May 6</td>
<td>MBP 1405H - Introduction to Bio-Microscopies (0.25 credits)</td>
<td>Jan. 11 – Feb. 22</td>
</tr>
<tr>
<td>MBP 1308H</td>
<td>- Radiation Biology & DNA Repair (0.25 credits)</td>
<td>Sept. 23 – Oct. 28</td>
<td>MBP 1406H - Introduction to Biophotonics (0.25 credits)</td>
<td>Mar. 4 – Apr. 1</td>
</tr>
</tbody>
</table>

*Projected course offerings subject to change.
List of Course Modules 2021 - 2022

Fall 2021

- Biophysics of Focused Ultrasound, Thermal Biophysics
- Cancer Epigenetics
- Introductory Biostatistics - MANDATORY
- Magnetic Resonance Imaging – Overview
- Overview of Medical Imaging
- Radiation Biology and DNA Repair
- Scientific Exposition and Ethics - MANDATORY
- Quantitative Cancer Genomics
- Tumor Microenvironment

Winter 2022

- Advanced Ultrasound
- Basics of Cell and Molecular Biology
- Biomedical Applications of Artificial Intelligence
- Development, Stem Cells & Cancer
- Introduction to Bio-Microscopies
- Introduction to Biophotonics
- Medical Device Commercialization Essentials
- Medical Device Innovation and Entrepreneurship
- Radiation Oncology: Clinical & Experimental Radiobiology
- Ultrasound Overview

NOTE: Should there be insufficient enrolment in a module listed above, it will be offered the following year.
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1403H - Biophysics of Focused Ultrasound, Thermal Biophysics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Dr. Meaghan O'Reilly</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Tuesdays, 12:30 – 2:30 pm</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>NONE</td>
</tr>
</tbody>
</table>

Module Goals

Focused ultrasound can induce both thermal and non-thermal effects in biological tissues. These biophysical interactions form the basis of a range of therapeutic applications in current medical practice and in leading-edge research. The first half of this course will focus on thermal biophysics, drawing examples from focused ultrasound therapy as well as from other thermal modalities, such as radiofrequency and microwave. The physical and biophysical interaction mechanisms between the energy sources and tissue will be emphasized. Fundamentals of thermal dosimetry will be covered, with reference to the relevant tissue properties, the models of energy propagation within tissues, experimental techniques for dosimetry measurements, and the resulting biological effects. In the second half of this course nonthermal bioeffects of focused ultrasound will be examined. The physical mechanisms behind these mechanical effects will be covered, with an emphasis on cavitation and cavitation-mediated effects. Treatment monitoring considerations for non-thermal therapies will be discussed. The current status of thermal medicine and of focused ultrasound therapies will be reviewed using select clinical and pre-clinical examples.

Evaluation Method

Exam (100%)

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 26</td>
<td>Meaghan O'Reilly</td>
<td>Biology/Rationale/Nomenclature</td>
</tr>
<tr>
<td>November 2</td>
<td>Meaghan O'Reilly</td>
<td>Blood Flow/Modelling/Energy Delivery</td>
</tr>
<tr>
<td>November 9</td>
<td>Meaghan O'Reilly</td>
<td>Energy Delivery (Cont'd)/Thermometry/Treatment Monitoring</td>
</tr>
<tr>
<td>November 16</td>
<td>Meaghan O'Reilly</td>
<td>Non-Thermal Mechanisms of Ultrasound/Bioeffects</td>
</tr>
<tr>
<td>November 23</td>
<td>Meaghan O'Reilly</td>
<td>Cavitation/Cavitation Nucleating Agents</td>
</tr>
<tr>
<td>November 30</td>
<td>Meaghan O'Reilly</td>
<td>Treatment Monitoring for Non-Thermal Therapies</td>
</tr>
<tr>
<td>December 7</td>
<td>Exam</td>
<td></td>
</tr>
</tbody>
</table>

[Return to Fall 2021 Course List](#)
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1306H - Cancer Epigenetics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Daniel De Carvalho & Hansen He</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Thursdays, 9:00 – 11:00 am</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>NONE</td>
</tr>
<tr>
<td>Module Goals</td>
<td>Epigenetic regulation is critical in cancer development and progression. Moreover, epigenetic modifications can be used as therapeutic targets as well as biomarkers in cancer. This course will introduce basic concept in epigenetics and the frontiers in cancer epigenetics. Each class will consist of a one-hour student lecture reviewing the day’s topic, followed by a one-hour student-led interactive discussion around the specific papers.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>Presentation and participation in discussion. Each student will be responsible for a lecture topic review to be held in the first hour (35% of their grade) and for a scientific manuscript presentation in the second hour (35% of their grade) of each lecture. All other students are expected to contribute to the scientific manuscript discussion in each lecture (30% of their grade). Lecturers will provide the lecture topic and suggest manuscripts to be discussed at least two weeks prior to the lecture date. The selected scientific manuscripts will need to be shared with all students at least one week before the lecture. Lecturers will be available in person or by email to provide an optional review of the students’ proposed presentation and discussion plan. The lecturers are responsible for assigning the student’s grade using an evaluation form common across all of the lectures.</td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
</tr>
<tr>
<td>November 4</td>
<td>Daniel De Carvalho & Housheng Hansen He</td>
</tr>
<tr>
<td>November 11</td>
<td>Cheryl Arrowsmith</td>
</tr>
<tr>
<td>November 18</td>
<td>Michael Hoffman</td>
</tr>
<tr>
<td>November 25</td>
<td>Daniel De Carvalho</td>
</tr>
<tr>
<td>December 2</td>
<td>Faiyaz Notta</td>
</tr>
<tr>
<td>December 9</td>
<td>Housheng Hansen He</td>
</tr>
<tr>
<td>December 16</td>
<td>Mathieu Lupien</td>
</tr>
</tbody>
</table>

Return to Fall 2021 Course List
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1201H - Introductory Biostatistics - MANDATORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Drs. Nilesh Ghugre & Maged Goubran</td>
</tr>
<tr>
<td>Teaching Assistant</td>
<td>Nicholas Luciw</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Tuesdays, 10 am – 12 noon, followed by one-hour TA session 12 noon – 1 pm. Special TA session (Python bootcamp), Fri. Sept. 10, 9 am – 12 noon. TA office hours for Python Q/A, one hour per week (time TBD)</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>Required module – there are no prerequisites. However, students are recommended to obtain working knowledge of the Python programming language. (Online Python resources will be distributed to students in advance of the term so that they can be prepared for the Bootcamp session.)</td>
</tr>
<tr>
<td>Module Goals</td>
<td>This course will serve as a rapid introduction to probability and statistical thinking with methods drawn from frequentist as well as Bayesian statistics. Students will gain a thorough understanding of how statistical inference is conducted and will, by the end of the course, be able to critically assess our use of statistics in the search for scientific truths.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>5 assignments (10% each) and final exam (50%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td>September 10</td>
</tr>
<tr>
<td>September 14</td>
</tr>
<tr>
<td>September 21</td>
</tr>
<tr>
<td>September 28</td>
</tr>
<tr>
<td>October 5</td>
</tr>
<tr>
<td>October 12</td>
</tr>
<tr>
<td>October 19</td>
</tr>
<tr>
<td>October 26</td>
</tr>
<tr>
<td>November 5</td>
</tr>
</tbody>
</table>

[Return to Fall 2021 Course List](#)
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1407H - Magnetic Resonance Imaging Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Dr. Jean Chen</td>
</tr>
<tr>
<td>Teaching Assistant</td>
<td>Jaykumar Patel</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Mondays, 12:30 – 2:30 pm</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>A foundation in signals and systems theory and Fourier transforms is required. Students are strongly advised to take the Overview of Medical Imaging module prior to this module.</td>
</tr>
<tr>
<td>Module Goals</td>
<td>Since development of the first hospital-grade systems in the 1980s, magnetic resonance imaging (MRI) continues to make a profound impact on how physicians evaluate soft tissues within the human body. This course provides students with an overview of MRI technology covering the underlying physical principles of signal generation, signal contrast mechanisms, process of image formation, and basic instrumentation. The course is a prerequisite for students who subsequently wish to take Advanced Topics in MRI.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>Lab (40%) and Final Assignment (60%)</td>
</tr>
</tbody>
</table>

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 1</td>
<td>Kamil Uludag</td>
<td>Basic MR Physics 1</td>
</tr>
<tr>
<td>November 8</td>
<td>Kamil Uludag</td>
<td>Basic MR Physics 1</td>
</tr>
<tr>
<td>November 15</td>
<td>Brian Nieman</td>
<td>Imaging Physics 1</td>
</tr>
<tr>
<td>November 22</td>
<td>Brian Nieman</td>
<td>Imaging Physics 2</td>
</tr>
<tr>
<td>November 29</td>
<td>Jean Chen</td>
<td>Laboratory</td>
</tr>
<tr>
<td>December 6</td>
<td>Jean Chen</td>
<td>Instrumentation</td>
</tr>
<tr>
<td>December 13</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>December 20</td>
<td>Final Assignment</td>
<td></td>
</tr>
</tbody>
</table>

[Return to Fall 2021 Course List](#)
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1411H - Overview of Medical Imaging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Dr. John G. Sled</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Wednesdays, 9:30 – 11:30 am</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>Students are expected to have a foundation in undergraduate level mathematics including differential and integral calculus, complex numbers, linear algebra, and probability theory. Students entering from an engineering or physics undergraduate program will likely need no additional preparation. Students from another discipline may need additional preparation and should contact the module coordinator well in advance as to whether self-directed reading prior to the module start is recommended.</td>
</tr>
<tr>
<td>Module Goals</td>
<td>This module provides the mathematical preliminaries of medical imaging and introduces concepts of image formation, inverse problems, stochastic processes and instrument performance that are common to many medical imaging modalities. An introduction and historical perspective on the major medical imaging technologies is also presented. This course is a recommended prerequisite for many the imaging modules offered by MBP including those on MRI and ultrasound.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>Exam (70%) and Lab Report (30%)</td>
</tr>
<tr>
<td>Schedule</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
</tr>
<tr>
<td>September 15</td>
<td>TBD</td>
</tr>
<tr>
<td>September 22</td>
<td>John G. Sled</td>
</tr>
<tr>
<td>September 29</td>
<td>John G. Sled</td>
</tr>
<tr>
<td>October 6</td>
<td>John G. Sled</td>
</tr>
<tr>
<td>October 13</td>
<td>John G. Sled</td>
</tr>
<tr>
<td>Week of October 18-22</td>
<td>John G. Sled</td>
</tr>
<tr>
<td>October 27</td>
<td>Exam</td>
</tr>
</tbody>
</table>

[Return to Fall 2021 Course List]
<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1308H - Radiation Biology & DNA Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Drs. Marianne Koritzinsky & Razq Hakem</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Mondays at 10:00 am – 12:00 pm</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Module Goals

DNA repair is critical for maintaining genomic integrity and its defects increase cancer risk. In addition, mutations in genes involved in DNA damage signaling or repair have also been associated with other human diseases and syndromes. DNA damage can also be induced to treat cancer patients as is the case for radiotherapy and a number of genotoxic anti-cancer drugs widely used in the clinics. This module will focus on DNA damage repair mechanisms and the physiological response to DNA insults, including radio- and chemo- therapies.

Evaluation Method

- Presentation/discussion of scientific papers assigned a week ahead of time by the lecturers.
- Class participation in all lectures.
- Students will be required to submit research proposals to address questions that have arisen out of the topics covered in the module. On Dec. 6, each student will be assigned by the coordinators a specific topic/lecture to cover with the research proposal.

Oral Presentation: 45%
Class Participation: 15%
Research Proposal: 40%

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 1</td>
<td>Marianne Koritzinsky</td>
<td>Introduction to Radiation Biology</td>
</tr>
<tr>
<td>November 8</td>
<td>Razq Hakem</td>
<td>Preclinical models to study mechanisms of DNA double strand breaks repair and their role in cancer</td>
</tr>
<tr>
<td>November 15</td>
<td>Benjamin Lok</td>
<td>Clinical Radiotherapy Overview and Predictive Biomarkers in the Clinic</td>
</tr>
<tr>
<td>November 22</td>
<td>Karim Mekhail</td>
<td>R-loops, DNA repair and genomic instability</td>
</tr>
<tr>
<td>November 29</td>
<td>Shane Harding</td>
<td>Cell cycle control and cellular responses to radiation/DNA damage</td>
</tr>
<tr>
<td>December 6</td>
<td>David Malkin</td>
<td>The role of p53 in cancer development</td>
</tr>
<tr>
<td>December 13</td>
<td>Research proposals to be submitted before 4PM on Dec. 13th.</td>
<td></td>
</tr>
</tbody>
</table>

Return to Fall 2021 Course List
<table>
<thead>
<tr>
<th>Fall 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
</tr>
<tr>
<td>Coordinator</td>
</tr>
<tr>
<td>Teaching Assistant</td>
</tr>
<tr>
<td>Day & Time</td>
</tr>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
</tr>
<tr>
<td>Module Goals</td>
</tr>
<tr>
<td>Evaluation Method</td>
</tr>
<tr>
<td>Schedule</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>September 13</td>
</tr>
<tr>
<td>September 22</td>
</tr>
<tr>
<td>September 29</td>
</tr>
<tr>
<td>Date</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>October 6</td>
</tr>
<tr>
<td>October 13</td>
</tr>
<tr>
<td>October 20</td>
</tr>
<tr>
<td>October 27</td>
</tr>
<tr>
<td>November 3</td>
</tr>
<tr>
<td>November 10</td>
</tr>
</tbody>
</table>
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1300H - Quantitative Cancer Genomics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Trevor Pugh & Mathieu Lupien</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Thursdays, 1:00 – 3:00 pm* (*except the intro session on Sept 16, 2:00 – 4:00 pm and October 14 lecture, 12:30 - 2:30 pm.)</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>Undergraduate molecular biology and genetics</td>
</tr>
</tbody>
</table>

Module Goals

Each class will consist of a 1-hour student lecture reviewing the day’s topic in detail, followed by interactive discussion around a specific paper, case report, or mini-workshop illustrating the application of research findings in a novel way (e.g. clinical application, meta-analysis, new use for old data). The organizing Instructor will provide a list of topics that must be covered by the student in the review portion of the class and moderate discussion during the more open portion.

Evaluation Method

Each student will be responsible for a Lecture Topic Review to be held in the first hour (35% of their grade) and for a Scientific Manuscript Presentation in the second hour (35% of their grade) of each lecture. All other students are expected to contribute to the Scientific Manuscript Discussion in each lecture (30% of their grade). The class accepts a minimum of 6 and maximum of 14 students. Instructors are to provide the lecture topic and can suggest manuscripts to be discussed in the second hour at least one week prior to the start date. The selected Scientific Manuscript is to be shared with all students at least 3 days before the lecture (usually Monday the week of the class). Lecturers will be available in person or by email to provide an optional review of the student’s proposed presentation and discussion plan up to 3 days prior to student’s presentation. The Instructors are responsible for assigning the student’s grade using an evaluation form common across all of the lectures.

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 16 (2:00 - 4:00 pm)</td>
<td>Trevor Pugh & Mathieu Lupien</td>
<td>Course overview and setting expectations.</td>
</tr>
<tr>
<td>September 23</td>
<td>Mathieu Lupien</td>
<td>Genome hacking: how to alter chromatin states in cancer</td>
</tr>
<tr>
<td>September 30</td>
<td>Trevor Pugh</td>
<td>Clinical cancer genomics: Approaches to analysis of cancer genomes to guide patient care.</td>
</tr>
<tr>
<td>October 7</td>
<td>Benjamin Haibe-Kains</td>
<td>Pharmacogenomics: Identifying opportunities for drug repositioning in cancer through aggregation of public data sets</td>
</tr>
<tr>
<td>October 14 (12:30 – 2: 30 pm)</td>
<td>Daniel De Carvalho</td>
<td>Epigenomic weaknesses and immunotherapy: Improving</td>
</tr>
<tr>
<td>Date</td>
<td>Speaker</td>
<td>Topic</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>October 21</td>
<td>Hansen He</td>
<td>Transcriptional Regulation: A quantitative approach to identify new therapeutic targets within the cancer transcriptional landscape</td>
</tr>
<tr>
<td>October 28</td>
<td>Michael Hoffman</td>
<td>Cancer Epigenomics</td>
</tr>
</tbody>
</table>
Fall 2021

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1311H - Tumor Microenvironment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Rama Khokha & Bradly Wouters</td>
</tr>
<tr>
<td>Teaching Assistant</td>
<td>Lauren Katz</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Thursdays, 9:15 – 11:15 am, with the exception of one lecture on Friday, October 15 at 9:15 am</td>
</tr>
<tr>
<td>Location</td>
<td>Delivered online via Zoom Meeting</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Module Goals

The tumor microenvironment (TME) is a complex entity in human cancers. It is constituted by multiple structural and cellular aberrations that arise during tumorigenesis. How cellular and molecular features of TME underlie tumor development and progression, as well as how these characteristics form the basis for new biomarkers and cancer therapies will be covered in this topic.

The class will be split into groups of ~5 students. The instructor will deliver a lecture, followed by a presentation (30-40 minutes) delivered by a selected student group. The presentation will be based on 3-4 papers that have been provided at least two weeks ahead of the class. A set of instructions will also be provided to groups ahead of time. The non-presenting groups will actively participate in the review/criticism of these presented papers, as well as be prepared to cover the next set of questions in this field. Depending on the number of students enrolled, there will be either 1 or 2 rounds of presentations. Some lecturers will use a variation of the above format for class participation.

Evaluation Method

Attendance/Participation/ Presentation (50%)
Exam (50%)

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>September 23</td>
<td>Anastasia Tikhanova</td>
<td>The Bone Marrow Niche</td>
</tr>
<tr>
<td>September 30</td>
<td>Brad Wouters</td>
<td>Hypoxia</td>
</tr>
<tr>
<td>October 7</td>
<td>Tracy McGaha</td>
<td>Immune cells</td>
</tr>
<tr>
<td>October 15</td>
<td>Steven Chan</td>
<td>Mitochondria</td>
</tr>
<tr>
<td>October 21</td>
<td>Aaron Schimmer</td>
<td>Mitochondrial Proteases</td>
</tr>
<tr>
<td>October 28</td>
<td>Rama Khokha & Barbara Grunwald</td>
<td>Stromal Heterogeneity</td>
</tr>
<tr>
<td>October 28</td>
<td>Take Home Exam</td>
<td></td>
</tr>
</tbody>
</table>

[Return to Fall 2021 Course List](#)
<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1401H - Advanced Ultrasound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Dr. David Goertz</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Wednesdays, 9:30 am – 3:00 pm</td>
</tr>
<tr>
<td>Location</td>
<td>SRI, 2075 Bayview Ave. Room TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>Ultrasound Overview module or its equivalent (Please contact Dr. Goertz if uncertain)</td>
</tr>
<tr>
<td>Module Goals</td>
<td>This module builds upon the introductory material covered in the Ultrasound Overview course and is intended to provide a more substantial foundation for students pursuing thesis research involving biomedical ultrasound. Linear and nonlinear wave interactions with tissue will be covered, along with their implications for imaging and therapeutic applications. Selected topics will then be presented, including transducer principles of design and fabrication, advanced beamforming methods, cavitation and contrast agents.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>Exam and assignment</td>
</tr>
</tbody>
</table>

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 2</td>
<td>David Goertz</td>
<td>Wave interactions with tissue; cavitation</td>
</tr>
<tr>
<td>March 9</td>
<td>Christine Demore</td>
<td>Transducers; beamforming</td>
</tr>
<tr>
<td>March 16</td>
<td>Olivier Villemain</td>
<td>Doppler Ultrasound; contrast agents; selected topics</td>
</tr>
<tr>
<td>March 23</td>
<td>TBA</td>
<td>Tutorial</td>
</tr>
</tbody>
</table>
| Topic | MBP 1404H - Basics of Cell and Molecular Biology
(in ACORN referred to as “Cell and Molecular Biology for Physicists”) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Margarete Akens & Arash Zarrine-Afsar</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Thursdays, 9:00 – 11:00 am</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>NONE</td>
</tr>
<tr>
<td>Module Goals</td>
<td>This course provides introduction to basic concepts of anatomy, cellular & molecular biology and cell signaling related to cancer formation and progression. Methods for the analysis of genome & proteome will be discussed along with computational image analysis principles. The course will stress breadth of knowledge rather than depth. Participation mark combines attendance and active engagement in the discussions.</td>
</tr>
<tr>
<td>Evaluation Method</td>
<td>75% exam, 25% participation</td>
</tr>
</tbody>
</table>

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 3</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>March 10</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>March 17</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>March 24</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>March 31</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>April 7</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>April 14</td>
<td>Exam</td>
<td></td>
</tr>
</tbody>
</table>
Winter 2022

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1413H - Biomedical Applications of Artificial Intelligence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Jüri Reimand & John G. Sled</td>
</tr>
<tr>
<td>Day & Time</td>
<td>TBD</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
</tbody>
</table>

Recommended Prerequisites

MBP1201H – Introductory Biostatistics or equivalent. Students should have a good working knowledge of probability, differential and integral calculus. The assignments will require programming in Python. A good understanding of the core syntax and principles of structured programming in Python or another programming language is required.

Module Goals

This module is a graduate level course in machine learning and artificial intelligence applied to biomedical research. It covers core concepts, machine learning algorithms, and deep learning approaches. Applications in medical imaging, genomics and clinical information are discussed. Students will have an in-depth course project applying these techniques to real-world datasets from their own research.

Evaluation Method

Assignments (40%) and final project (60%)

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 - TBD</td>
<td>Anne Martel</td>
<td>Core concepts and algorithms</td>
</tr>
<tr>
<td>Week 2 - TBD</td>
<td>TBD</td>
<td>Applications in medical imaging, radiomics I</td>
</tr>
<tr>
<td>Week 3 - TBD</td>
<td>TBD</td>
<td>Applications in genomics, epigenomics and sequence models</td>
</tr>
<tr>
<td>Week 4 - TBD</td>
<td>TBD</td>
<td>Application in medical imaging, radiomics II</td>
</tr>
<tr>
<td>Week 5 - TBD</td>
<td>TBD</td>
<td>Applications to biomarkers, multi-omics, time to event models</td>
</tr>
<tr>
<td>Week 6 - TBD</td>
<td>TBD</td>
<td>Applications in single cell genomics</td>
</tr>
<tr>
<td>Week 7 - TBD</td>
<td>TBD</td>
<td>Project presentations</td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
<td>Lecture</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>January 17</td>
<td>N. Iscove</td>
<td>Stem cells, self-renewal and the origin of leukemia</td>
</tr>
<tr>
<td>January 24</td>
<td>J. Dick</td>
<td>Concepts of "stemness" in human normal and leukemic hemopoiesis</td>
</tr>
<tr>
<td>January 31</td>
<td>C. O’Brien</td>
<td>Architecture, regulation and microenvironment in normal and malignant gastrointestinal stem cell systems</td>
</tr>
<tr>
<td>February 7</td>
<td>R. Khokha</td>
<td>Architecture, regulation and microenvironment in the mammary epithelial stem cell system</td>
</tr>
<tr>
<td>February 14</td>
<td>L. Ailles</td>
<td>Detection and quantitation of cancer stem cells and microenvironmental impact in epithelial and mesenchymal cancers</td>
</tr>
<tr>
<td>February 21</td>
<td>no class</td>
<td></td>
</tr>
<tr>
<td>February 28</td>
<td>G. Keller</td>
<td>Principles of embryonic development applied to derivation of adult cells and tissues from embryonic stem cells</td>
</tr>
<tr>
<td>March 7</td>
<td>Written examination</td>
<td></td>
</tr>
</tbody>
</table>
Winter 2022

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1405H - Introduction to Bio-Microscopies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Dr. Brian Wilson, Ralph DaCosta & Mohammad Mazhab-Jafari</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Tuesdays, 9:00 – 11:00 am</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Module Goals

Various forms of microscopy are widely used in biomedical research as well as in clinical medicine. Major classes of microscopy include: A) optical microscopy (wide-field, fluorescence, laser-scanning confocal, Raman, bioluminescence, near-field/scanning-probe, super-resolution, non-linear, light-sheet, intravital), together with a variety of fluorescent and other probes (dyes, fluorescent proteins, small-molecules) and B) electron microscopy, in both transmission and surface-scanning modes.

The goal of this Module is to introduce the basic physical principles of the different forms of microscopy and survey the different techniques, instruments and probes used in studying bio-specimens (cells, tissues, biomaterials), illustrating these with examples of biomedical applications. The role of digital techniques and image processing/analysis will be considered.

Evaluation Method

Written Assignment

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 11</td>
<td>Wilson</td>
<td>Introduction and Optical Microscopy-1</td>
</tr>
<tr>
<td>January 18</td>
<td>Wilson</td>
<td>Optical Microscopy-2</td>
</tr>
<tr>
<td>January 25</td>
<td>Wilson</td>
<td>Optical Microscopy-3</td>
</tr>
<tr>
<td>February 1</td>
<td>DaCosta</td>
<td>Intravital Microscopy</td>
</tr>
<tr>
<td>February 8</td>
<td>Mazhab-Jafari</td>
<td>Electron Microscopy</td>
</tr>
<tr>
<td>February 15</td>
<td>ALL</td>
<td>Discussion/Tutorial</td>
</tr>
<tr>
<td>February 22</td>
<td>AOMF (optional)</td>
<td>Hands-On</td>
</tr>
</tbody>
</table>

[Return to Winter 2022 Course List]
Winter 2022

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1406H - Introduction to Biophotonics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Alex Vitkin & Lothar Lilge</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Fridays, 10:00 am – 12:00 pm</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>None</td>
</tr>
</tbody>
</table>

Module Goals

The use of light in medical diagnostics, therapeutics and biomedical research is increasing, driven by the advent of new light sources, inexpensive imaging detectors, advanced fiber-optic delivery systems, better understanding of light-tissue interactions, and proven research and clinical applications. The course will focus mostly on *in vivo* photonics and initially cover (1) the relevant issues of light propagation in / interaction with turbid media such as tissue. The bulk of the course will focus on (2) particular technical implementations and research / pre-clinical / clinical results in photo-diagnostics (effects of *tissue on light*) and phototherapeutics (effects of *light on tissue*). Advanced topics such as (3) molecular imaging, nanophotonics, optical clearing and theranostics will also be briefly covered. As such, the course goals include basic competencies in these three [(1)-(3)] areas.

For students with limited background in optics and photonics, we will also run a series of tutorials to provide some "light" basics we deem useful for the course. These will be offered prior to the module itself, and will be optional for interested students.

Evaluation Method

Class participation (25%), and the oral exit exam (75%)

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 4</td>
<td>Lothar Lilge</td>
<td>Pre-Module Tutorial "Optics Background 1" Wave optics versus Ray optics</td>
</tr>
<tr>
<td>February 11</td>
<td>Lothar Lilge</td>
<td>Pre-Module Tutorial "Optics Background 2" Spectroscopy and light sources</td>
</tr>
<tr>
<td>February 18</td>
<td>Lothar Lilge</td>
<td>Basic biophotonics – light propagation in tissue (Maxwell’s equations, transport / diffusion theory and statistical Monte Carlo methods), light-tissue interactions, tissue optical properties, fundamentals of photodiagnostics and phototherapeutics.</td>
</tr>
<tr>
<td>February 25</td>
<td>Alex Vitkin</td>
<td>Diagnostic imaging, discussions of resolution, contrast, turbidity, imaging depth issues. High resolution diagnostics including optical coherence imaging, photoacoustics, optical projection tomography, confocal and multi-photon</td>
</tr>
<tr>
<td>Date</td>
<td>Instructor</td>
<td>Topic</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>March 4</td>
<td>Lothar Lilge</td>
<td>Diagnostic spectroscopy techniques including hyperspectral imaging, fluorescence and Raman spectroscopy</td>
</tr>
<tr>
<td>March 11</td>
<td>Alex Vitkin</td>
<td>Photo-therapeutics based on non-thermal interactions (photo bio-modulation therapy)</td>
</tr>
<tr>
<td>March 18</td>
<td>Lothar Lilge</td>
<td>Photo-therapeutics based on temporally-controlled (rapidly pulsed) laser delivery, including photo-ablation and selective photothermolysis</td>
</tr>
<tr>
<td>March 25</td>
<td>Alex Vitkin</td>
<td>Selected advanced topics such as nanophotonics, molecular imaging, optical clearing and theragnostics</td>
</tr>
<tr>
<td>April 1</td>
<td>Exam</td>
<td></td>
</tr>
</tbody>
</table>
Winter 2022

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1408H - Medical Device Commercialization Essentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinators</td>
<td>Drs. Graham Wright, Brian Courtney & Ahmed Nasef</td>
</tr>
</tbody>
</table>
| Day & Time | Tuesdays, 5:45 – 7:30 pm (lecture dates subject to change)
Orientation: January 4, 4:30-5:30PM. |
| Location | SRI, 2075 Bayview Ave. Room TBD |
| Recommended Prerequisites | Medical Device Innovation & Entrepreneurship is a co-requisite (must be taken at the same time) |

Module Goals
Not all medical device innovations will make it into patient care. Without a compelling, accessible market, a sustainable business model and operating plan, a well-thought-out plan for acquiring and managing intellectual property, and strong regulatory and reimbursement strategies, even the seemingly most important medical innovations are unlikely to be commercialized. The Medical Device Commercialization Essentials course complements the Medical Device Innovation and Entrepreneurship module and provides students with an experiential connection to the process of commercializing novel medical discoveries. The course focuses on systematic examination of issues and factors that directly affect the financial viability and sustainability of a medical device innovation and impact the innovator’s ability to successfully commercialize a solution. The delicate and frequently conflicting interplay between intellectual property, regulatory environment, reimbursement mechanisms, business strategy and financial modelling are explored with hands-on exercises and interactive workshops.
The module is recommended for students who would like to: (1) catalyze innovation in major medtech companies; (2) build their own medtech start-ups; (3) draw on world-class innovative research conducted in Canadian universities, research institutes and hospitals; and (4) lead translational research projects.

Evaluation Method
In the Medical Device Innovation & Entrepreneurship module, students present a systematic review of significant clinical challenges and propose the development of novel medical device solutions that address the gaps in these challenges. In this commercialization module, students are required to incorporate the analysis and critical review of the prospective novel medical device concept from assignment 1 into a high-level report or a business case proposal.
Students are to assume that this high-level proposal will be reviewed by an industrial technology advisor (ITA) through Sunnybrook’s technology transfer office. The ITA will assess the potential of financially supporting the commercialization of this technology and determine whether or not an adequate market opportunity exists to support the development of an innovation. The students should draft the business case proposal within this commercialization context. The business case proposal should include the following sections to demonstrate commercialization potential: technology overview, market opportunity, industry analysis, business model/value proposition, and associated preliminary IP and reimbursement strategies.
Grading Scheme: Class participation (10%), Group Report (90%).
<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 4</td>
<td>TBD</td>
<td>Orientation</td>
</tr>
<tr>
<td>January 18</td>
<td>TBD</td>
<td>The Art of the Start!</td>
</tr>
<tr>
<td>January 25</td>
<td>TBD</td>
<td>Innovation and Design Thinking in Healthcare</td>
</tr>
<tr>
<td>February 1</td>
<td>TBD</td>
<td>Market Research Exercise</td>
</tr>
<tr>
<td>February 8</td>
<td>TBD</td>
<td>Business Model Canvas Exercise</td>
</tr>
<tr>
<td>February 22</td>
<td>TBD</td>
<td>Prior Art Search Exercise</td>
</tr>
<tr>
<td>March 1</td>
<td>TBD</td>
<td>Medical device regulation Exercise</td>
</tr>
<tr>
<td>March 8</td>
<td>TBD</td>
<td>Brainstorming & Ideation Exercise</td>
</tr>
<tr>
<td>March 15</td>
<td>TBD</td>
<td>Panel discussion on raising capital & talking to investors</td>
</tr>
<tr>
<td>March 22</td>
<td>TBD</td>
<td>The Art of the Start!</td>
</tr>
<tr>
<td>April 5</td>
<td>Final Report due</td>
<td></td>
</tr>
</tbody>
</table>

[Return to Winter 2022 Course List]
Module Goals

Innovations in Medical technology have led to revolutionary advancements in health care. As new devices and technologies are developed, patients are benefiting from more targeted, less invasive treatments. However, new standard of care technologies won’t reach the bedside unless inventors have the skills to bring them to market.

The Medical Device Innovation and Entrepreneurship course is an opportunity to explore and navigate the principles underlying the challenges of medical device development. The course is designed to engrain the key mindsets and skill sets that help make successful medtech entrepreneurs. The course addresses the fundamental aspects from developing an idea to commercial success, enabling students to gain knowledge of the role of intellectual property management, regulatory pathways, reimbursement mechanisms, funding models, and business strategy in the successful commercialization of new medical device technologies.

The course is delivered using a mix of lectures, guest speakers, team projects, recommended readings and online learning materials. In addition, students get the opportunity to network with local experts and thought leaders in the medtech field. The module is recommended for students who would like to: (1) catalyze innovation in major medtech companies; (2) build their own medtech start-ups; (3) draw on world-class innovative research conducted in Canadian universities, research institutes and hospitals; and (4) lead translational research projects.

Evaluation Method

Teams of students will have the opportunity to examine and analyze medical technologies that address unmet healthcare needs. Students will be required to explore the clinical problem context, assess the clinical need, motivations and influences of all stakeholders, identify and analyze existing solutions and treatment options, and assess market and commercialization potential with the goal of providing a critical review and strategic assessment of the identified technologies.

Students will be evaluated based on: (i) in-class participation; and (ii) a presentation, which will include the following sections:

- An assessment of the clinical need & underlying problem leading to the new device. Students are expected to perform medical literature reviews through online sources e.g., PubMed, Harrison’s online, etc.
• Market analysis including market size, segments, attractiveness, and competitive dynamics
• Analysis of the different parties and stakeholders involved in delivering and financing care related to the clinical challenge (e.g. patients, physicians, hospitals, government officials/legislators, MOHLTC, nurse practitioners, etc.)
• Analysis of treatment options and innovations available prior to the identified novel device that tried to address the identified clinical challenge. Students are expected to perform a comprehensive review of previous innovations outlining their strengths and weaknesses.
• An overview of the medical device concept that has been developed to address the need including associated regulatory & reimbursement considerations.
• A critical review of possible areas of improvement for the identified device

Students will be evaluated on how well they have taken the lessons taught during the course and applied them. For all evaluations, students are required to demonstrate both that they have the evidence to support their claims as well as that they have added value by extending the analysis and using creativity.

Grading Scheme: Class participation (10%), Group Presentation (90%).

<table>
<thead>
<tr>
<th>Schedule</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Instructor</td>
</tr>
<tr>
<td>January 4</td>
<td>TBD</td>
</tr>
<tr>
<td>January 11</td>
<td>TBD</td>
</tr>
<tr>
<td>January 18</td>
<td>TBD</td>
</tr>
<tr>
<td>January 25</td>
<td>TBD</td>
</tr>
<tr>
<td>February 1</td>
<td>TBD</td>
</tr>
<tr>
<td>February 8</td>
<td>TBD</td>
</tr>
<tr>
<td>February 15</td>
<td>TBD</td>
</tr>
<tr>
<td>February 22</td>
<td>TBD</td>
</tr>
<tr>
<td>March 1</td>
<td>TBD</td>
</tr>
<tr>
<td>March 8</td>
<td>TBD</td>
</tr>
<tr>
<td>March 15</td>
<td>TBD</td>
</tr>
<tr>
<td>Date</td>
<td>TBD</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>March 22</td>
<td>TBD</td>
</tr>
<tr>
<td>March 29</td>
<td>TBD</td>
</tr>
<tr>
<td>April 5</td>
<td>TBD</td>
</tr>
</tbody>
</table>

[Return to Winter 2022 Course List]
Winter 2022

| Topic | MBP 1301H - Radiation Oncology: Clinical & Experimental Radiobiology*
*Please note enrollment for this course is limited to MBP Graduate Students only. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Dr. Marianne Koritzinsky</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Mon, April 25 to Fri, April 29, 10:00 am – 6:00 pm. Exam on Friday, May 6.</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>The suggested textbook for this course is Basic Clinical Radiobiology, Fifth Edition. It is strongly recommended that you read this book before attending the course.</td>
</tr>
</tbody>
</table>

Module Goals
This program provides a comprehensive overview of radiation biology with a particular emphasis on aspects of direct relevance to the practice of radiation oncology. It addresses the molecular and cellular responses to radiation-induced damage that influence cell death in both tumors and normal tissues. Quantitation of radiation effects and the underlying biological basis for fractionation of radiotherapy and dose-response relationships in the clinic are covered in depth. The biological basis for current approaches to improve radiotherapy will be described including novel fractionation schemes, retreatment issues, targeting hypoxia, biological modifiers and combined radiotherapy/chemotherapy.
Suggested textbook for this topic is:
This topic is also offered through the Department of Radiation Oncology to residents in radiation oncology and physics, as well as other radiobiology researchers.

Evaluation Method
Exam (100% of the grade). Friday, May 6th. Location TBD

Schedule

MONDAY, April 25 2022 – Schedule TBD

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture</th>
<th>Faculty speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15-11:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:30-12:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15-1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00-2:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>2:00-2:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:30-3:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:15-4:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00-4:15</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>4:15-5:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00-6:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TUESDAY, April 26, 2022 – Schedule TBD

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture</th>
<th>Faculty speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45-11:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:45-12:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15-1:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:00-2:00</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>2:00-2:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:45-3:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:15-4:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Lecture</td>
<td>Faculty speakers</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>4:30-5:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:30-5:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:45-6:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WEDNESDAY, April 27, 2022 – Schedule TBD

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture</th>
<th>Faculty speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:30-11:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15-11:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:45-12:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>12:00-12:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:45-1:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30-2:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>2:30-3:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:15-4:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:00-4:15</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>4:15-5:00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:00-5:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5:45-6:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THURSDAY, April 28, 2022 – Schedule TBD

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture</th>
<th>Faculty speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45-11:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:45-12:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-1:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:15-1:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30-2:30</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>2:30-3:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:15-3:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:30-3:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>3:45-4:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:30-4:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4:45-5:00</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>5:00-6:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FRIDAY, April 29, 2022 – Schedule TBD

<table>
<thead>
<tr>
<th>Time</th>
<th>Lecture</th>
<th>Faculty speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00-10:45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:45-11:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:30-11:45</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>11:45-12:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30-1:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:30-2:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Lectures/schedule is subject to change – Last updated on July 27, 2021.

[Return to Winter 2022 Course List]
Winter 2022

<table>
<thead>
<tr>
<th>Topic</th>
<th>MBP 1412H - Ultrasound Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordinator</td>
<td>Dr. Christine Démoré</td>
</tr>
<tr>
<td>Day & Time</td>
<td>Mondays & Fridays, 9:30 am – 3 pm</td>
</tr>
<tr>
<td>Location</td>
<td>TBD</td>
</tr>
<tr>
<td>Recommended Prerequisites</td>
<td>A foundation in signals and systems theory and Fourier transforms is required. Students are strongly advised to take the Overview of Medical Imaging module prior to this one.</td>
</tr>
</tbody>
</table>

Module Goals

This course covers the fundamental principles of ultrasound for both imaging and therapy applications.

Ultrasound imaging is a high-resolution and rapid imaging modality with many clinical applications, from monitoring fetus in pregnancy, to diagnostic imaging of breast, abdomen and vasculature, and guiding interventional tools in minimally-invasive procedures. Ultrasound therapy is a targeted method of delivering energy into tissue for treatment of disease or for drug delivery, with a broad range of clinical applications.

This course will introduce the principles of ultrasound imaging, starting with a general overview of this imaging modality and its applications. It will cover the basic physics of ultrasound, interaction of ultrasound waves with tissue, transducers and arrays, image formation, signal processing, flow detection, ultrasound contrast agents, and example implementations of ultrasound.

The lectures will be given over four days with two practical laboratory sessions to reinforce the taught concepts.

Evaluation Method

Lab report (50%) and exam (50%)

Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Instructor</th>
<th>Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 10</td>
<td>Olivier Villemain</td>
<td>Introduction to Ultrasound History Basic physics and principles in ultrasonics</td>
</tr>
<tr>
<td></td>
<td>Christine Démoré</td>
<td></td>
</tr>
<tr>
<td>January 14</td>
<td>Christine Démoré</td>
<td>Image generation & quality Application & implementation examples Practical Lab – Session 1</td>
</tr>
<tr>
<td>January 17</td>
<td>Christine Démoré</td>
<td>Systems Signal analysis Application & implementation examples</td>
</tr>
<tr>
<td></td>
<td>Olivier Villemain</td>
<td></td>
</tr>
<tr>
<td>January 21</td>
<td>David Goertz</td>
<td>Doppler & colour flow imaging; Application & implementation examples Contrast imaging Practical Lab – Session 2</td>
</tr>
<tr>
<td>March 11</td>
<td>Exam</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td></td>
</tr>
</tbody>
</table>

Return to Winter 2022 Course List